Thursday, 30 July 2015

The Metal Layers


Note: 
  1. Layout Rules for all the layers that are going to be discussed will be part of a individual post. 
  2. All layers referred here are as per the MOSIS Rules. 
In this post, we will discuss Metal layers used in layout development, which eventually will be used in fabrication process. Following will be discussed,
  • Bonding Pads , Probe Pads 
  • metal layer (metal1 and metal2) 
  • via for contacts  
Note: Metals normally used is either aluminium or copper. 

Metal1, Metal2 and Via1 Layers:  
  • metal2 layer will always be placed above metal1 layer. If metal3 layer is to be used then this layer will sit above metal2 layer and so on. 
  • via1 connects metal1 and metal2 layers.
  • Similarly as the first point,if you were to use more than one metal layers in the fabrication,
    then via2 will connect metal2 and metal3 layers.
  • vias' are normally fabricated using tungsten.
  • Following figure illustrates the points mentioned before, 
  • Parasitics:
    •  Let us consider the figure below to understand the parasitcs, 
    • Capacitance:Fringe(end/border/perimeter) and Plate capacitance exists.
      Total Capacitance = Fringe Capacitance + Plate Capacitance
      Table below illustrates capacitance's associated with the metal layers
    • Resistance:
      There is a finite resistance associated with the metal layers and contact vias.

Bonding Pads :
  • are at the interface between the die and the package/outside world. 
  • Probe pads are similar to bonding pads with lesser dimensions.
  • Final size of the pads are the only part of a layout that doesn't scale as process
    dimensions shrink.

Wednesday, 29 July 2015

Introduction and The Well

-------------------------------------------------------------------------------------------------------------------------
Book referred  == "CMOS Circuit Design, Layout and Simulation" 
                                                                         written by Jacob Baker.
-------------------------------------------------------------------------------------------------------------------------
Basic components of CMOS process: 

About Silicon and Doping :   
  • Number of intrinsic carriers in a pure silicon = ni = 14.5 x 10^9 carriers/cm3, therefore
    number of holes (p) in VB = number of electrons (n) in CB = intrinsic carriers (ni)
  • Number of Silicon atoms = Nsi = 50 x 10^21 atoms/cm3
  • If donor atoms are added to Si:
    electrons carriers (n) =(appx) Nd Number of Donor atoms, provided Nsi >> Nd >> ni
  • If Acceptor atoms are added to Si:
    hole carriers (p) =(appx) Na Number of acceptor atoms, provided Nsi >> Na >> ni
  • Mass-Law equation
                pn = ni^2
  • Fermi- Energy Level: Indicates probability of occupation of electrons is half.
    For p-type semiconductor : Ei - Efp = kT. ln(Na/ni) Joules
    For n-type semiconductor : Efn - Ei = kT. ln(Nd/ni) Joules 
    Hence Built-In potential/ Barrier potential:
                            Vbi = (Efn - Efp) / q = (kT/q) x ln(NaNd/ni^2)
    Where :
                  Ei = Fermi energy of intrinsic silicon
                  Efp = Fermi energy of p-type silicon
                  Efn = Fermi energy of n-type silicon

The Well :  
  • An example of a well (Let us consider n-well and p-substrate in all our discussions). 


  • In Oxide formation (SiO2),
    thickness of oxide = 2.2222...x thickness of silicon being used for this purpose.
  • Depth(t) is always fixed in fabrication process, so its important to know that only things we
    worry about is L (length) and W (width).

  • Parasitic Associated with n-well:  
    1. Parasitic diode exists between n-well and p-substrate as shown in fig above.
      DC characteristics of the diode are given by "shockley's diode equation"
                               Id = Is (e^(Vd/nVt) - 1) Amps
                    where,
                          Id = Diode Current
                          Is = Saturation Current
                          Vd = Diode Voltage
                          Vt  = Thermal Voltage (kT/q), k = Boltzman constant
                          n(eta) = emission co-efficient                               
    2. Parasitic npn/pnp bipolar transistor can exists between two n-well placed consecutively.                                  
    3. Depletion layer Capacitance:
                 
      Depletion Capacitance Cj = Cj0 / (1 - Vd/Vbi)^m
                  Where :
                               Cj0 = Zero bias capacitance
                               m = grading co-efficient(showing how silicon changes from n to p-type).
    4. Storage/Diffusion Capacitance:
                  Storage Capacitance Cs = (Id/nVt) x Tt
                  where :
                               n(eta) = emission co-efficient
                               Tt(tuo - t) = Minority Carrier Lifetime.
                               Minority Carrier Lifetime is "the time it takes an electron to diffuse
                               through junction and recombines"
                          
    5. Reverse recovery time associated with a Diode:
      From the fig below, 


                     Reverse Recovery time trr = t3(10% of iR) - t1
                     Storage Time (The time it takes to remove the stored charge) : 
                                     ts  = t2 - t1   or   ts = Tt x ln((iF - iR)/-iR)
                     where :
                                      iF = (Vf - 0.7) / R
                                      iR = (Vr - 0.7) / R   
  • RC Delay through n-well:
    • Resistance of a rectangular slab is given by,
          R = Rsquare (L/W) ohms
          where,
                 Rsquare = resistivity(rho)/thickness(t) ohms
    • RC circuit understanding:
          Output voltage Vout = Vpulse (1 - e^(-t/RC)) Volts
          Delay time (Vout = 50% of Vpulse) td = 0.7RC
          Rise Time tr = t90% - t10% = 2.2RC
            
    • Distributed RC/ n-well RC circuitry:
          Delay Time td = 0.35 . Rsquare . Csquare . l^2
          Rise Time tr = 1.1 . Rsquare . Csquare . l^2