Wednesday, 29 July 2015

Introduction and The Well

-------------------------------------------------------------------------------------------------------------------------
Book referred  == "CMOS Circuit Design, Layout and Simulation" 
                                                                         written by Jacob Baker.
-------------------------------------------------------------------------------------------------------------------------
Basic components of CMOS process: 

About Silicon and Doping :   
  • Number of intrinsic carriers in a pure silicon = ni = 14.5 x 10^9 carriers/cm3, therefore
    number of holes (p) in VB = number of electrons (n) in CB = intrinsic carriers (ni)
  • Number of Silicon atoms = Nsi = 50 x 10^21 atoms/cm3
  • If donor atoms are added to Si:
    electrons carriers (n) =(appx) Nd Number of Donor atoms, provided Nsi >> Nd >> ni
  • If Acceptor atoms are added to Si:
    hole carriers (p) =(appx) Na Number of acceptor atoms, provided Nsi >> Na >> ni
  • Mass-Law equation
                pn = ni^2
  • Fermi- Energy Level: Indicates probability of occupation of electrons is half.
    For p-type semiconductor : Ei - Efp = kT. ln(Na/ni) Joules
    For n-type semiconductor : Efn - Ei = kT. ln(Nd/ni) Joules 
    Hence Built-In potential/ Barrier potential:
                            Vbi = (Efn - Efp) / q = (kT/q) x ln(NaNd/ni^2)
    Where :
                  Ei = Fermi energy of intrinsic silicon
                  Efp = Fermi energy of p-type silicon
                  Efn = Fermi energy of n-type silicon

The Well :  
  • An example of a well (Let us consider n-well and p-substrate in all our discussions). 


  • In Oxide formation (SiO2),
    thickness of oxide = 2.2222...x thickness of silicon being used for this purpose.
  • Depth(t) is always fixed in fabrication process, so its important to know that only things we
    worry about is L (length) and W (width).

  • Parasitic Associated with n-well:  
    1. Parasitic diode exists between n-well and p-substrate as shown in fig above.
      DC characteristics of the diode are given by "shockley's diode equation"
                               Id = Is (e^(Vd/nVt) - 1) Amps
                    where,
                          Id = Diode Current
                          Is = Saturation Current
                          Vd = Diode Voltage
                          Vt  = Thermal Voltage (kT/q), k = Boltzman constant
                          n(eta) = emission co-efficient                               
    2. Parasitic npn/pnp bipolar transistor can exists between two n-well placed consecutively.                                  
    3. Depletion layer Capacitance:
                 
      Depletion Capacitance Cj = Cj0 / (1 - Vd/Vbi)^m
                  Where :
                               Cj0 = Zero bias capacitance
                               m = grading co-efficient(showing how silicon changes from n to p-type).
    4. Storage/Diffusion Capacitance:
                  Storage Capacitance Cs = (Id/nVt) x Tt
                  where :
                               n(eta) = emission co-efficient
                               Tt(tuo - t) = Minority Carrier Lifetime.
                               Minority Carrier Lifetime is "the time it takes an electron to diffuse
                               through junction and recombines"
                          
    5. Reverse recovery time associated with a Diode:
      From the fig below, 


                     Reverse Recovery time trr = t3(10% of iR) - t1
                     Storage Time (The time it takes to remove the stored charge) : 
                                     ts  = t2 - t1   or   ts = Tt x ln((iF - iR)/-iR)
                     where :
                                      iF = (Vf - 0.7) / R
                                      iR = (Vr - 0.7) / R   
  • RC Delay through n-well:
    • Resistance of a rectangular slab is given by,
          R = Rsquare (L/W) ohms
          where,
                 Rsquare = resistivity(rho)/thickness(t) ohms
    • RC circuit understanding:
          Output voltage Vout = Vpulse (1 - e^(-t/RC)) Volts
          Delay time (Vout = 50% of Vpulse) td = 0.7RC
          Rise Time tr = t90% - t10% = 2.2RC
            
    • Distributed RC/ n-well RC circuitry:
          Delay Time td = 0.35 . Rsquare . Csquare . l^2
          Rise Time tr = 1.1 . Rsquare . Csquare . l^2
            

No comments:

Post a Comment